COURSE INFORMATON						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
OPERATING SYSTEMS	CSE 535	1	3 + 0	3	10	

|--|

Language of Instruction	English
Course Level	Graduate (Second Cycle)
Course Type Compulsory	
Course Coordinator	
Instructors	
Assistants	
Goals	The goal of the course is to study general design principles of modern operating systems(OS) and concurrent programming.
Content	Fundamental OS kernel components and their design principles with hands on experience on a real operating system.

Le	arning Outcomes	Program Outcomes	Teachin Methods	
1.	Knowledge of process management component design principles and ability to design synchronization primitives under realistic hardware constraints and conditions	3,4	1,2,3	A,C,D
2.	Knowledge of memory management component design principles for virtual memory systems	3,4	1,2	A,C,D
3.	Knowledge of file system component design principles and secondary storage management issues	3,4	1,2	A,C,D
4.	Knowledge and ability to use modern design techniques for the design of kernel system calls supporting multi-processing and multi-threading systems	3,4,5	1,2,3	A,C,D
5.	Knowledge and ability to use modern operating system components and tools for the	3,4,5	1,2,3	C,D

design of multi-threaded concurrent systems with realistic constraints in real life applications.			
 Ability to conduct experiments, gather data, analyze and interpret results for investigating engineering solutions to OS kernel design problems. 	5	3	C,D
7. Ability to work efficiently in intra- disciplinary teams and to work individually.	6	3	A,C,D

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Term Project

	COURSE CONTENT	
Week	Topics	Study Materials
1	Introduction and historical perspective	
2	Processes and Threads: creation and dispatching, context switch	
3	Cooperating vs Independent Processes, IPC , Atomic Operation, Race Condition	
4	Synchronization Problem: Mutual Exclusion, Critical Section, Implementing Locks	
5	Classical IPC Problems, bounded buffers, Synhronization: Scheduling Constraints, Semaphores	
6	CPU Scheduling	
7	Midterm I	
8	Monitors, Condition Variables, Deadlocks	
9	Memory Management: Contiguous Allocation, Protection with Base & Bound Registers, Segmentation, Paging, Translation Lookaside Buffers	
10	Virtual Memory, Demand Paging, Page Replacement, Thrashing, Working Set	
11	Secondary Storage Management, Disk Allocation, Disk Scheduling	
12	Midterm II	
13	File Systems: Naming and Directories	
14	Atomic Transactions, Protection and Security	

RECOMMENDED SOURCES				
Textbook A.Silberschatz et al, "Operating System Concepts", Addisor Wesley				
Additional Resources	Lecture Notes: http://cse.yeditepe.edu.tr/v2/en/academic/course-pages Lab material: http://cse.yeditepe.edu.tr/v2/en/academic/course-pages A. Tanenbaum, "Modern Operating Systems", Prentice Hall G. Nutt, "Operating Systems, Addison Wesley			

	MATERIAL SHARING
Documents	
Assignments	
Exams	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	2	57	
Quizzes	2	7	
Assignment	3	21	
Term Project		15	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		70	
Total		100	

COURSE CATEGORY	Expertise/Field Courses
-----------------	-------------------------

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	Knowledge on advanved computer architectures					
2	Knowledge on advanced computer system design issues					Χ
3	Knowledge on theory of computer science	Χ				

4	Ability to read, understand, present and critise research work from the liteature.	X
5	Knowledge on advanced telecommunications and next generation computer networks	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration (Including the exam week: 16x Total course hours)	14	5	70		
Hours for off-the-classroom study (Pre-study, practice)	14	4	56		
Mid-terms	2	5	10		
Homework	3	4	12		
Term Project	1	100	20		
Final examination	1	10	10		
Total Work Load			258		
Total Work Load / 25 (h)			10,1		
ECTS Credit of the Course			10		